
Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 1 -

Sorting

Chapter 11

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 2 -

Sorting Algorithms

Comparison Sorting

Selection Sort

Bubble Sort

Insertion Sort

Merge Sort

Heap Sort

Quick Sort

Linear Sorting

Counting Sort

Radix Sort

Bucket Sort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 3 -

Comparison Sorts

Comparison Sort algorithms sort the input by successive

comparison of pairs of input elements.

Comparison Sort algorithms are very general: they

make no assumptions about the values of the input

elements.

4 3 7 11 2 2 1 3 5

e.g.,3 11?

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 4 -

Sorting Algorithms and Memory

Some algorithms sort by swapping elements within the

input array

Such algorithms are said to sort in place, and require

only O(1) additional memory.

Other algorithms require allocation of an output array into

which values are copied.

These algorithms do not sort in place, and require O(n)

additional memory.

4 3 7 11 2 2 1 3 5

swap

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 5 -

Stable Sort

A sorting algorithm is said to be stable if the ordering of

identical keys in the input is preserved in the output.

The stable sort property is important, for example, when

entries with identical keys are already ordered by

another criterion.

(Remember that stored with each key is a record

containing some useful information.)

4 3 7 11 2 2 1 3 5

1 2 2 3 3 4 5 7 11

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 6 -

Selection Sort

Selection Sort operates by first finding the smallest

element in the input list, and moving it to the output list.

It then finds the next smallest value and does the same.

It continues in this way until all the input elements have

been selected and placed in the output list in the correct

order.

Note that every selection requires a search through the

input list.

Thus the algorithm has a nested loop structure

Selection Sort Example

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 7 -

Selection Sort

for i = n-1 downto 0

 jmin = 0

 for j = 1 to i

 if A[j] < A[jmin]

 jmin = j

 add A[jmin] to output

 remove A[jmin] from input

O(i)

T(n) = i

i=0

n 2

= O(n2)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 8 -

Bubble Sort

Bubble Sort operates by successively comparing

adjacent elements, swapping them if they are out of

order.

At the end of the first pass, the largest element is in the

correct position.

A total of n passes are required to sort the entire array.

Thus bubble sort also has a nested loop structure

Bubble Sort Example

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 9 -

Expert Opinion on Bubble Sort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 10 -

Bubble Sort

for i = n-2 downto 0

 for j = 0 to i

 if A[j] > A[j + 1]

 swap A[j] and A[j + 1]

O(i)

T(n) = i

i=0

n 2

 = O(n2)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 11 -

Comparison

Thus both Selection Sort and Bubble Sort have O(n2)

running time.

However, both can also easily be designed to

Sort in place

Stable sort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 12 -

Example: Insertion Sort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 13 -

Example: Insertion Sort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 14 -

Example: Insertion Sort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 15 -

Insertion Sort Example

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 16 -

Comparison

Selection Sort

Bubble Sort

Insertion Sort

Sort in place

Stable sort

But O(n2) running time.

Can we do better?

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 17 -

Recursive Sorts

Given list of objects to be sorted

Split the list into two sublists.

Recursively have a friend sort the two sublists.

Combine the two sorted sublists into one entirely sorted list.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 18 -

Merge Sort

88
14

98 25
62

52

79

30
23

31

Divide and Conquer

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 19 -

Merge Sort

Merge-sort is a sorting algorithm based on the divide-

and-conquer paradigm

It was invented by John von Neumann, one of the

pioneers of computing, in 1945

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 20 -

Divide-and-Conquer

Divide-and conquer is a general algorithm design paradigm:

Divide: divide the input data S in two disjoint subsets S1 and S2

Recur: solve the subproblems associated with S1 and S2

Conquer: combine the solutions for S1 and S2 into a solution for S

The base case for the recursion are subproblems of size 0 or 1

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 21 -

Merge Sort

88
14

98 25
62

52

79

30
23

31
Split Set into Two

 (no real work)

25,31,52,88,98

Get one friend to

sort the first half.

14,23,30,62,79

Get one friend to

sort the second half.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 22 -

Merge Sort

Merge two sorted lists into one

25,31,52,88,98

14,23,30,62,79

14,23,25,30,31,52,62,79,88,98

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 23 -

Merge-Sort
Merge-sort on an input sequence S with n elements
consists of three steps:

Divide: partition S into two sequences S1 and S2 of about n/2
elements each

Recur: recursively sort S1 and S2

Conquer: merge S1 and S2 into a unique sorted sequence

Algorithm mergeSort(S)

 Input sequence S with n elements

 Output sequence S sorted

if S.size() > 1

 (S1, S2) split(S, n/2)

 mergeSort(S1)

 mergeSort(S2)

 merge(S1, S2, S)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 24 -

Merging Two Sorted Sequences

The conquer step of merge-sort consists of merging two sorted

sequences A and B into a sorted sequence S containing the union of

the elements of A and B

Merging two sorted sequences, each with n/2 elements takes O(n)

time

Normally, merging is not in-place: new memory must be allocated to

hold S.

It is possible to do in-place merging using linked lists.

Code is more complicated

Only changes memory usage by a constant factor

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 25 -

Merging Two Sorted Sequences (As Arrays)
Algorithm merge(S

1
, S

2
, S):

Input: Sorted sequences S
1
 and S

2
 and an empty sequence S, implemented as arrays

Output: Sorted sequence S containing the elements from S
1
 and S

2

i j 0

while i <S
1
.size() and j <S

2
.size() do

if S
1
.get(i) S

2
.get(j) then

S.addLast(S
1
.get(i))

i i +1

else

S.addLast(S
2
.get(j))

j j +1

while i <S
1
.size() do

S.addLast(S
1
.get(i))

i i +1

while j <S
2
.size() do

S.addLast(S
2
.get(j))

j j +1

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 26 -

Merging Two Sorted Sequences (As Linked Lists)

Algorithm merge(S
1
, S

2
, S):

Input: Sorted sequences S
1
 and S

2
 and an empty sequence S, implemented as linked lists

Output: Sorted sequence S containing the elements from S
1
 and S

2

while S
1

 and S
2

 do

if S
1
.first().element() S

2
.first().element() then

S.addLast(S
1
.remove(S

1
.first()))

i i +1

else

S.addLast(S
2
.remove(S

2
.first()))

while S
1

 do

S.addLast(S
1
.remove(S

1
.first()))

while S
2

 do

S.addLast(S
2
.remove(S

2
.first()))

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 27 -

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree

each node represents a recursive call of merge-sort and stores

unsorted sequence before the execution and its partition

sorted sequence at the end of the execution

the root is the initial call

the leaves are calls on subsequences of size 0 or 1

7 2 | 9 4 2 4 7 9

7 | 2 2 7 9 | 4 4 9

7 7 2 2 9 9 4 4

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 28 -

Execution Example

Partition

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 29 -

Execution Example (cont.)

Recursive call, partition

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 30 -

Execution Example (cont.)

Recursive call, partition

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 31 -

Execution Example (cont.)

Recursive call, base case

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 32 -

Execution Example (cont.)

Recursive call, base case

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 33 -

Execution Example (cont.)

Merge

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 34 -

Execution Example (cont.)

Recursive call, …, base case, merge

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 35 -

Execution Example (cont.)

Merge

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 36 -

Execution Example (cont.)

Recursive call, …, merge, merge

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 37 -

Execution Example (cont.)

Merge

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 38 -

Analysis of Merge-Sort

The height h of the merge-sort tree is O(log n)

at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)

we partition and merge 2i sequences of size n/2i

we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

 T(n) = 2T(n / 2) +O(n)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 39 -

Heapsort

Invented by Williams & Floyd in 1964

O(nlogn) worst case – like merge sort

Sorts in place – like insertion sort

Combines the best of both algorithms

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 40 -

Selection Sort

Largest i values are sorted on the right.

Remaining values are off to the left.

6,7,8,9 <
3

4
1

5

2

Max is easier to find if a heap.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 41 -

Heap-Sort Algorithm

Build an array-based (max) heap

Iteratively call removeMax() to extract the keys in

descending order

Store the keys as they are extracted in the unused tail

portion of the array

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 42 -

Heap-Sort Algorithm

Algorithm HeapSort(S)

Input: S, an unsorted array of comparable elements

Output: S, a sorted array of comparable elements

 T = MakeMaxHeap (S)

 for i = n-1 downto 1

 S[i] = T.removeMax()

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 43 -

Heap Sort Example

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 44 -

Heap-Sort Running Time

The heap can be built bottom-up in O(n) time

Extraction of the ith element takes O(log(n - i+1)) time

(for downheaping)

Thus total run time is

T(n) = O(n) + log(n i +1)
i=1

n

= O(n) + log i

i=1

n

O(n) + logn

i=1

n

= O(n logn)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 45 -

Quick-Sort

88
14

98 25
62

52

79

30
23

31

Divide and Conquer

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 46 -

QuickSort

Invented by C.A.R. Hoare in 1960

“There are two ways of constructing a software design:

One way is to make it so simple that there are obviously

no deficiencies, and the other way is to make it so

complicated that there are no obvious deficiencies. The
first method is far more difficult.”

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 47 -

Quick-Sort

Quick-sort is a divide-and-

conquer algorithm:

Divide: pick a random

element x (called a pivot)

and partition S into

L elements less than x

E elements equal to x

G elements greater than x

Recur: Quick-sort L and G

Conquer: join L, E and G

 x

 x

 L G E

 x

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 48 -

The Quick-Sort Algorithm

Algorithm QuickSort(S)

 if S.size() > 1

 (L, E, G) = Partition(S)

 QuickSort(L)

 QuickSort(G)

 S = (L, E, G)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 49 -

Partition
Remove, in turn, each

element y from S and

Insert y into sequence L, E

or G, depending on the

result of the comparison
with the pivot x (e.g., last

element in S)

Each insertion and removal

is at the beginning or at the

end of a sequence, and

hence takes O(1) time

Thus, partitioning takes

O(n) time

Algorithm Partition(S)

 Input sequence S

 Output subsequences L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.

 L, E, G empty sequences

x S.getLast().element

while S.isEmpty()

 y S.removeFirst(S)

 if y < x

 L.addLast(y)

 else if y = x

 E.addLast(y)

 else { y > x }

 G.addLast(y)

return L, E, G

¬

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 50 -

Partition
Since elements are

removed at the beginning

and added at the end, this
partition algorithm is stable.

Algorithm Partition(S)

 Input sequence S

 Output subsequences L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.

 L, E, G empty sequences

x S.getLast().element

while S.isEmpty()

 y S.removeFirst(S)

 if y < x

 L.addLast(y)

 else if y = x

 E.addLast(y)

 else { y > x }

 G.addLast(y)

return L, E, G

¬

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 51 -

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree

Each node represents a recursive call of quick-sort and stores

Unsorted sequence before the execution and its pivot

Sorted sequence at the end of the execution

The root is the initial call

The leaves are calls on subsequences of size 0 or 1

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 52 -

Execution Example

Pivot selection

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 53 -

Execution Example (cont.)

Partition, recursive call, pivot selection

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 54 -

Execution Example (cont.)

Partition, recursive call, base case

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 55 -

Execution Example (cont.)

Recursive call, …, base case, join

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 56 -

Execution Example (cont.)

Recursive call, pivot selection

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 57 -

Execution Example (cont.)

Partition, …, recursive call, base case

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 58 -

Execution Example (cont.)

Join, join

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 59 -

Quick-Sort Properties

The algorithm just described is stable, since elements

are removed from the beginning of the input sequence

and placed on the end of the output sequences (L,E, G).

However it does not sort in place: O(n) new memory is

allocated for L, E and G

Is there an in-place quick-sort?

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 60 -

In-Place Quick-Sort

Note: Use the lecture slides here instead of the textbook

implementation (Section 11.2.2)

88
14

98 25
62

52

79

30
23

31

Partition set into two using

randomly chosen pivot

14

25
30

23 31

88
98

62
79

 52

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 61 -

In-Place Quick-Sort

14

25
30

23 31

88
98

62
79

 52

14,23,25,30,31

Get one friend to

sort the first half.

62,79,98,88

Get one friend to

sort the second half.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 62 -

In-Place Quick-Sort

14,23,25,30,31

62,79,98,88

52

Glue pieces together.

 (No real work)

14,23,25,30,31,52,62,79,88,98

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 63 -

The In-Place Partitioning Problem

88
14

98 25
62

52

79

30
23

31

Input:

14

25
30

23 31

88
98

62
79

 52 <

Output:
x=52

Problem: Partition a list into a set of small values and a set of large values.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 64 -

Precise Specification

p r

p r q

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 65 -

3 subsets are maintained

One containing values less

than or equal to the pivot

One containing values

greater than the pivot

One containing values yet

to be processed

Loop Invariant

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 66 -

Maintaining Loop Invariant

• Consider element at location j

– If greater than pivot, incorporate into

‘> set’ by incrementing j.

– If less than or equal to pivot,

incorporate into ‘ set’ by swapping

with element at location i+1 and

incrementing both i and j.

– Measure of progress: size of unprocessed set.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 67 -

Maintaining Loop Invariant

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 68 -

Establishing Loop Invariant

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 69 -

Establishing Postcondition

Exhaustive on exit

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 70 -

Establishing Postcondition

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 71 -

An Example

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 72 -

In-Place Partitioning: Running Time

Each iteration takes O(1) time Total = O(n)

or

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 73 -

In-Place Partitioning is NOT Stable

or

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 74 -

The In-Place Quick-Sort Algorithm

Algorithm QuickSort(A, p, r)

 if p < r

 q = Partition(A, p, r)

 QuickSort(A, p, q - 1)

 QuickSort(A, q + 1, r)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 75 -

Running Time of Quick-Sort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 76 -

Quick-Sort Running Time
We can analyze the running time of Quick-Sort using a recursion

tree.

At depth i of the tree, the problem is partitioned into 2i sub-problems.

The running time will be determined by how balanced these

partitions are.

depth

0

1

…

h

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 77 -

Quick Sort

88
14

98 25
62

52

79

30
23

31

Let pivot be the first

element in the list?

14

25
30

23

88
98

62
79

 31
52

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 78 -

Quick Sort

 14

14,23,25,30,31,52,62,79,88,98

23,25,30,31,52,62,79,88,98

If the list is already sorted,

then the list is worst case unbalanced.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 79 -

QuickSort: Choosing the Pivot

Common choices are:

random element

middle element

median of first, middle and last element

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 80 -

Best-Case Running Time

The best case for quick-sort occurs when each pivot partitions the

array in half.

Then there are O(log n) levels

There is O(n) work at each level

Thus total running time is O(n log n)

depth time

0 n

1 n

… …

i n

… …

log n n

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 81 -

Quick Sort

Best Time:

Worst Time:

Expected Time:

T(n) = 2T(n/2) + (n)

 = (n log n)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 82 -

Worst-case Running Time

The worst case for quick-sort occurs when the pivot is the unique

minimum or maximum element

One of L and G has size n 1 and the other has size 0

The running time is proportional to the sum

n + (n 1) + … + 2 + 1

Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n 1

… …

n 1 1

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 83 -

Average-Case Running Time

If the pivot is selected randomly, the average-case running time

for Quick Sort is O(n log n).

Proving this requires a probabilistic analysis.

We will simply provide an intution for why average-case O(n log n)

is reasonable.

depth

0

1

…

h

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 84 -

Expected Time Complexity for Quick Sort

 Q: Why is it reasonable to expect O(n logn) time complexity?

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 85 -

Expected Time Complexity for Quick Sort

 Then T (n) =T (p(n 1)) +T (q(n 1)) +O(n)

wlog, suppose that q > p.

Let k be the depth of the recursion tree

Then qkn = 1 k = logn / log(1 / q)

Thus k O(logn) :

 O(n) work done per level T (n) = O(nlogn).

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 86 -

Properties of QuickSort

In-place?

Stable?

Fast?

Depends.

Worst Case:

Expected Case:

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 87 -

Summary of Comparison Sorts

Algorithm Best

Case

Worst

Case

Average

Case

In

Place

Stable Comments

Selection n2 n2 Yes Yes

Bubble n n2 Yes Yes

Insertion n n2 Yes Yes Good if often almost sorted

Merge n log n n log n No Yes Good for very large datasets that

require swapping to disk

Heap n log n n log n Yes No Best if guaranteed n log n required

Quick n log n n2 n log n Yes No Usually fastest in practice

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 88 -

Comparison Sort: Lower Bound

MergeSort and HeapSort are both (n logn) (worst case).

Can we do better?

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 89 -

Comparison Sort: Decision Trees

Example: Sorting a 3-element array A[1..3]

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 90 -

Comparison Sort: Decision Trees

For a 3-element array, there are 6 external nodes.

For an n-element array, there are external nodes. n!

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 91 -

Comparison Sort

To store n! external nodes, a decision tree must have a

height of at least

Worst-case time is equal to the height of the binary

decision tree.

Thus T(n) logn!()

where logn! = log i

i=1

n

log n / 2
i=1

n / 2

(n logn)

Thus T(n) (n logn)

Thus MergeSort & HeapSort are asymptotically optimal.

logn!

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 92 -

Linear Sorts?

 Faster sorting may be possible if we can constrain the nature of the input.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 93 -

Example 1. Counting Sort

Invented by Harold Seward in 1954.

Counting Sort applies when the elements to be sorted

come from a finite (and preferably small) set.

For example, the elements to be sorted are integers in

the range [0…k-1], for some fixed integer k.

We can then create an array V[0…k-1] and use it to

count the number of elements with each value [0…k-1].

Then each input element can be placed in exactly the

right place in the output array in constant time.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 94 -

Counting Sort

Input: N records with integer keys between [0…3].

Output: Stable sorted keys.

Algorithm:

Count frequency of each key value to determine transition

locations

Go through the records in order putting them where they go.

Input:

Output: 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 3 3 3

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 95 -

CountingSort

Stable sort: If two keys are the same, their order does not change.

Input:

Output:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

Thus the 4th record in input with digit 1 must be

the 4th record in output with digit 1.

It belongs at output index 8, because 8 records go before it

ie, 5 records with a smaller digit & 3 records with the same digit

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3

Count These!

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 96 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

of records with digit v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

2 3 9 5

N records. Time to count? (N)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 97 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

of records with digit v:

of records with digit < v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

3 3 9 5

17 14 5 0

N records, k different values. Time to count? (k)

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 98 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

of records with digit < v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

17 14 5 0

= location of first record with digit v.

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 99 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

17 14 5 0 Location of first record

with digit v.

Algorithm: Go through the records in order

 putting them where they go.

1 0 ?

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 100 -

Loop Invariant

The first i-1 keys have been placed in the correct

locations in the output array

The auxiliary data structure v indicates the location at

which to place the ith key for each possible key value

from [1..k-1].

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 101 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

17 14 5 0 Location of next record

with digit v.

1

Algorithm: Go through the records in order

 putting them where they go.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 102 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

17 14 6 0 Location of next record

with digit v.

0

Algorithm: Go through the records in order

 putting them where they go.

1

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 103 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

17 14 6 1 Location of next record

with digit v.

0 0

Algorithm: Go through the records in order

 putting them where they go.

1

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 104 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

17 14 6 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 105 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

17 14 7 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0 3

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 106 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

18 14 7 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0 1 3

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 107 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

18 14 8 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0 1 3 1

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 108 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

18 14 9 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0 3 3 1 1

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 109 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

19 14 9 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0 1 3 1 1 3

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 110 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

19 14 10 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0 0 1 1 1 3 3

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 111 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

19 14 10 3 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0 2 1 1 1 3 3 0

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 112 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

19 15 10 3 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0 1 1 1 1 3 3 0 2

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 113 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

19 15 10 3 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order

 putting them where they go.

1 0 1 1 1 1 3 3 0 2

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 114 -

CountingSort

Input:

Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0

19 17 14 5 Location of next record

with digit v.

0 1 1 0 1 1 1 1 3 3 0 2 0 0 1 1 1 2 2

(N) Time =

(N+k) Total =

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 115 -

Input:

• An array of N numbers.

• Each number contains d digits.

• Each digit between [0…k-1]

Output:
• Sorted numbers.

Example 2. RadixSort 344

125

333

134

224

334

143

225

325

243

Digit Sort:

• Select one digit

• Separate numbers into k piles

 based on selected digit (e.g., Counting Sort).

125

224

225

325

333

134

334

344

143

243

Stable sort: If two cards are the same for that digit,

their order does not change.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 116 -

RadixSort

344

125

333

134

224

334

143

225

325

243

Sort wrt which

digit first?

The most

significant.

125

134

143

224

225

243

344

333

334

325

Sort wrt which

digit Second?

The next most

significant.

125

224

225

325

134

333

334

143

243

344

All meaning in first sort lost.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 117 -

RadixSort

344

125

333

134

224

334

143

225

325

243

Sort wrt which

digit first?

Sort wrt which

digit Second?

The least

significant.

333

143

243

344

134

224

334

125

225

325

The next least

significant.

224

125

225

325

333

134

334

143

243

344

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 118 -

RadixSort

344

125

333

134

224

334

143

225

325

243

Sort wrt which

digit first?

Sort wrt which

digit Second?

The least

significant.

333

143

243

344

134

224

334

125

225

325

The next least

significant.

2 24

1 25

2 25

3 25

3 33

1 34

3 34

1 43

2 43

3 44

Is sorted wrt least sig. 2 digits.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 119 -

Sort wrt i+1st

digit.

2 24

1 25

2 25

3 25

3 33

1 34

3 34

1 43

2 43

3 44

Is sorted wrt

first i digits.

1 25

1 34

1 43

2 24

2 25

2 43

3 25

3 33

3 34

3 44

Is sorted wrt

first i+1 digits.

i+1

These are in the

correct order

because sorted

wrt high order digit

RadixSort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 120 -

Sort wrt i+1st

digit.

2 24

1 25

2 25

3 25

3 33

1 34

3 34

1 43

2 43

3 44

Is sorted wrt

first i digits.

1 25

1 34

1 43

2 24

2 25

2 43

3 25

3 33

3 34

3 44
i+1

These are in the

correct order

because was sorted &

stable sort left sorted

Is sorted wrt

first i+1 digits.

RadixSort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 121 -

Loop Invariant

The keys have been correctly stable-sorted with respect

to the i-1 least-significant digits.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 122 -

Running Time

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 123 -

Example 3. Bucket Sort

Applicable if input is constrained to finite interval, e.g.,

[0…1).

If input is random and uniformly distributed, expected

run time is (n).

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 124 -

Bucket Sort

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 125 -

Loop Invariants

Loop 1

The first i-1 keys have been correctly placed into buckets of

width 1/n.

Loop 2

The keys within each of the first i-1 buckets have been correctly

stable-sorted.

Last Updated: 4/1/10 11:16 AM
CSE 2011

Prof. J. Elder
- 126 -

PseudoCode

Expected Running Time

