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Sorting 

Chapter 11 
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Sorting Algorithms 

Comparison Sorting 

Selection Sort 

Bubble Sort 

Insertion Sort 

Merge Sort 

Heap Sort 

Quick Sort 

Linear Sorting 

Counting Sort 

Radix Sort 

Bucket Sort 
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Comparison Sorts 

Comparison Sort algorithms sort the input by successive 

comparison of pairs of input elements. 

Comparison Sort algorithms are very general:  they 

make no assumptions about the values of the input 

elements. 

4 3 7 11 2 2 1 3 5 

e.g.,3 11?
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Sorting Algorithms and Memory 

Some algorithms sort by swapping elements within the 

input array 

Such algorithms are said to sort in place, and require 

only O(1) additional memory. 

Other algorithms require allocation of an output array into 

which values are copied. 

These algorithms do not sort in place, and require O(n) 

additional memory. 

4 3 7 11 2 2 1 3 5 

swap 
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Stable Sort 

A sorting algorithm is said to be stable if the ordering of 

identical keys in the input is preserved in the output. 

The stable sort property is important, for example, when 

entries with identical keys are already ordered by 

another criterion. 

(Remember that stored with each key is a record 

containing some useful information.) 

4 3 7 11 2 2 1 3 5 

1 2 2 3 3 4 5 7 11 
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Selection Sort 

Selection Sort operates by first finding the smallest 

element in the input list, and moving it to the output list. 

It then finds the next smallest value and does the same. 

It continues in this way until all the input elements have 

been selected and placed in the output list in the correct 

order. 

Note that every selection requires a search through the 

input list. 

Thus the algorithm has a nested loop structure 

Selection Sort Example 
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Selection Sort 

for i = n-1 downto 0 

 jmin = 0 

 for j = 1 to i 

  if A[ j ] < A[jmin] 

   jmin = j 

 add A[jmin] to output 

 remove A[jmin] from input 

O(i)

  
T(n) = i

i=0

n 2

= O(n2)
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Bubble Sort 

Bubble Sort operates by successively comparing 

adjacent elements, swapping them if they are out of 

order. 

At the end of the first pass, the largest element is in the 

correct position. 

A total of n passes are required to sort the entire array. 

Thus bubble sort also has a nested loop structure 

Bubble Sort Example 
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Expert Opinion on Bubble Sort 
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Bubble Sort 

for i = n-2 downto 0 

 for j = 0 to i 

  if A[ j ] > A[ j + 1 ] 

   swap A[ j ] and A[ j + 1 ] 

O(i)

  
T(n) = i

i=0

n 2

  = O(n2)
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Comparison  

Thus both Selection Sort and Bubble Sort have O(n2) 

running time. 

However, both can also easily be designed to  

Sort in place 

Stable sort 
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Example:  Insertion Sort 
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Example:  Insertion Sort 
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Example:  Insertion Sort 
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Insertion Sort Example 
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Comparison  

Selection Sort  

Bubble Sort  

Insertion Sort 

Sort in place 

Stable sort 

But O(n2) running time. 

Can we do better? 
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Recursive Sorts 

Given list of objects to be sorted  

Split the list into two sublists.  

Recursively have a friend sort the two sublists.  

Combine the two sorted sublists into one entirely sorted list.  
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Merge Sort 

88 
14 

98 25 
62 

52 

79 

30 
23 

31 

Divide and Conquer  
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Merge Sort 

Merge-sort is a sorting algorithm based on the divide-

and-conquer paradigm  

It was invented by John von Neumann, one of the 

pioneers of computing, in 1945 
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Divide-and-Conquer  

Divide-and conquer is a general algorithm design paradigm: 

Divide: divide the input data S in two disjoint subsets S1 and S2 

Recur: solve the subproblems associated with S1 and S2 

Conquer: combine the solutions for S1 and S2 into a solution for S 

The base case for the recursion are subproblems of size 0 or 1 
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Merge Sort 

88 
14 

98 25 
62 

52 

79 

30 
23 

31 
Split Set into Two 

 (no real work) 

25,31,52,88,98 

Get one friend to  

sort the first half.  

14,23,30,62,79 

Get one friend to  

sort the second half.  
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Merge Sort 

Merge two sorted lists into one  

25,31,52,88,98 

14,23,30,62,79 

14,23,25,30,31,52,62,79,88,98 
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Merge-Sort 
Merge-sort on an input sequence S with n elements 
consists of three steps: 

Divide: partition S into two sequences S1 and S2 of about n/2 
elements each 

Recur: recursively sort S1 and S2 

Conquer: merge S1 and S2 into a unique sorted sequence 

Algorithm mergeSort(S) 

 Input sequence S with n elements 

 Output sequence S sorted  

if S.size() > 1 

 (S1, S2)  split(S, n/2)  

 mergeSort(S1) 

 mergeSort(S2) 

 merge(S1, S2, S) 
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Merging Two Sorted Sequences 

The conquer step of merge-sort consists of merging two sorted 

sequences A and B into a sorted sequence S containing the union of 

the elements of A and B 

Merging two sorted sequences, each with n/2 elements takes O(n) 

time 

Normally, merging is not in-place:  new memory must be allocated to 

hold S. 

It is possible to do in-place merging using linked lists. 

Code is more complicated 

Only changes memory usage by a constant factor 
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Merging Two Sorted Sequences (As Arrays) 
Algorithm merge(S

1
, S

2
, S):

Input: Sorted sequences S
1
 and S

2
 and an empty sequence S, implemented as arrays

Output:  Sorted sequence S containing the elements from S
1
 and S

2

i j 0

while i <S
1
.size() and j <S

2
.size() do

if  S
1
.get(i) S

2
.get(j) then

S.addLast(S
1
.get(i))

i i +1

else

S.addLast(S
2
.get(j))

j j +1

while i <S
1
.size() do

S.addLast(S
1
.get(i))

i i +1

while j <S
2
.size() do

S.addLast(S
2
.get(j))

j j +1
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Merging Two Sorted Sequences (As Linked Lists) 

Algorithm merge(S
1
, S

2
, S):

Input: Sorted sequences S
1
 and S

2
 and an empty sequence S, implemented as linked lists

Output:  Sorted sequence S containing the elements from S
1
 and S

2

while S
1

 and S
2

 do

if  S
1
.first().element() S

2
.first().element() then

S.addLast(S
1
.remove(S

1
.first()))

i i +1

else

S.addLast(S
2
.remove(S

2
.first()))

while S
1

 do

S.addLast(S
1
.remove(S

1
.first()))

while S
2

 do

S.addLast(S
2
.remove(S

2
.first()))
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Merge-Sort Tree 
An execution of merge-sort is depicted by a binary tree 

each node represents a recursive call of merge-sort and stores 

unsorted sequence before the execution and its partition 

sorted sequence at the end of the execution 

the root is the initial call  

the leaves are calls on subsequences of size 0 or 1 

7  2 | 9  4    2  4  7  9 

7 | 2    2  7 9 | 4   4  9 

7  7 2  2 9  9 4  4 
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Execution Example 

Partition 
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Execution Example (cont.) 

Recursive call, partition 
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Execution Example (cont.) 

Recursive call, partition 
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Execution Example (cont.) 

Recursive call, base case 
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Execution Example (cont.) 

Recursive call, base case 
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Execution Example (cont.) 

Merge 
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Execution Example (cont.) 

Recursive call, …, base case, merge 
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Execution Example (cont.) 

Merge 
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Execution Example (cont.) 

Recursive call, …, merge, merge 
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Execution Example (cont.) 

Merge 



Last Updated:  4/1/10 11:16 AM 
CSE 2011 

Prof. J. Elder 
- 38 - 

Analysis of Merge-Sort 

The height h of the merge-sort tree is O(log n)  

at each recursive call we divide in half the sequence,  

The overall amount or work done at the nodes of depth i is O(n)  

we partition and merge 2i sequences of size n/2i  

we make 2i+1 recursive calls 

Thus, the total running time of merge-sort is O(n log n) 

depth #seqs size 

0 1 n 

1 2 n/2 

i 2i n/2i 

… … … 

  T(n) = 2T(n / 2) +O(n)
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Heapsort 

Invented by Williams & Floyd in 1964 

O(nlogn) worst case – like merge sort 

Sorts in place – like insertion sort 

Combines the best of both algorithms 
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Selection Sort 

Largest i values are sorted on the right. 

Remaining values are off to the left. 

6,7,8,9 < 
3 

4 
1 

5 

2 

Max is easier to find if a heap. 
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Heap-Sort Algorithm 

Build an array-based (max) heap 

Iteratively call removeMax() to extract the keys in 

descending order 

Store the keys as they are extracted in the unused tail 

portion of the array 
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Heap-Sort Algorithm 

Algorithm HeapSort(S) 

Input:  S, an unsorted array of comparable elements 

Output:  S, a sorted array of comparable elements   

 T = MakeMaxHeap (S) 

 for i = n-1 downto 1 

  S[i] = T.removeMax() 
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Heap Sort Example 
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Heap-Sort Running Time 

The heap can be built bottom-up in O(n) time 

Extraction of the ith element takes O(log(n - i+1)) time 

(for downheaping) 

Thus total run time is  

T(n) = O(n) + log(n i +1)
i=1

n

= O(n) + log i

i=1

n

O(n) + logn

i=1

n

= O(n logn)



Last Updated:  4/1/10 11:16 AM 
CSE 2011 

Prof. J. Elder 
- 45 - 

Quick-Sort 

88 
14 

98 25 
62 

52 

79 

30 
23 

31 

Divide and Conquer  
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QuickSort 

Invented by C.A.R. Hoare in 1960 

“There are two ways of constructing a software design: 

One way is to make it so simple that there are obviously 

no deficiencies, and the other way is to make it so 

complicated that there are no obvious deficiencies. The 
first method is far more difficult.” 
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Quick-Sort  

Quick-sort is a divide-and-

conquer algorithm: 

Divide: pick a random 

element x (called a pivot) 

and partition S into  

L elements less than x 

E elements equal to x 

G elements greater than x 

Recur: Quick-sort L and G 

Conquer: join L, E and G 

 x 

 x 

        L        G    E 

 x 
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The Quick-Sort Algorithm 

Algorithm QuickSort(S) 

 if S.size() > 1 

  (L, E, G) = Partition(S) 

  QuickSort(L) 

  QuickSort(G) 

  S = (L, E, G) 
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Partition 
Remove, in turn, each 

element y from S and  

Insert y into sequence L, E 

or G, depending on the 

result of the comparison 
with the pivot x (e.g., last 

element in S) 

Each insertion and removal 

is at the beginning or at the 

end of a sequence, and 

hence takes O(1) time 

Thus, partitioning takes 

O(n) time 

Algorithm Partition(S) 

 Input sequence S 

 Output subsequences L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 

 L, E, G  empty sequences 

x  S.getLast().element 

while     S.isEmpty() 

 y   S.removeFirst(S) 

 if y < x 

  L.addLast(y) 

 else if y = x 

   E.addLast(y) 

 else { y > x } 

  G.addLast(y) 

return L, E, G 

¬
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Partition 
Since elements are 

removed at the beginning 

and added at the end, this 
partition algorithm is stable. 

Algorithm Partition(S) 

 Input sequence S 

 Output subsequences L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 

 L, E, G  empty sequences 

x  S.getLast().element 

while     S.isEmpty() 

 y   S.removeFirst(S) 

 if y < x 

  L.addLast(y) 

 else if y = x 

   E.addLast(y) 

 else { y > x } 

  G.addLast(y) 

return L, E, G 

¬
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Quick-Sort Tree 
An execution of quick-sort is depicted by a binary tree 

Each node represents a recursive call of quick-sort and stores 

Unsorted sequence before the execution and its pivot 

Sorted sequence at the end of the execution 

The root is the initial call  

The leaves are calls on subsequences of size 0 or 1 
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Execution Example 

Pivot selection 
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Execution Example (cont.) 

Partition, recursive call, pivot selection 
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Execution Example (cont.) 

Partition, recursive call, base case 
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Execution Example (cont.) 

Recursive call, …, base case, join 
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Execution Example (cont.) 

Recursive call, pivot selection 
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Execution Example (cont.) 

Partition, …, recursive call, base case 
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Execution Example (cont.) 

Join, join 



Last Updated:  4/1/10 11:16 AM 
CSE 2011 

Prof. J. Elder 
- 59 - 

Quick-Sort Properties 

The algorithm just described is stable, since elements 

are removed from the beginning of the input sequence 

and placed on the end of the output sequences (L,E, G). 

However it does not sort in place:  O(n) new memory is 

allocated for L, E and G 

Is there an in-place quick-sort? 
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In-Place Quick-Sort 

Note:  Use the lecture slides here instead of the textbook 

implementation (Section 11.2.2) 

88 
14 

98 25 
62 

52 

79 

30 
23 

31 

Partition set into two using  

randomly chosen pivot 

14 

25 
30 

23 31 

88 
98 

62 
79 

 52  
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In-Place Quick-Sort 

14 

25 
30 

23 31 

88 
98 

62 
79 

 52  

14,23,25,30,31 

Get one friend to  

sort the first half.  

62,79,98,88 

Get one friend to  

sort the second half.  
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In-Place Quick-Sort 

14,23,25,30,31 

62,79,98,88 

52 

Glue pieces together. 

  (No real work) 

14,23,25,30,31,52,62,79,88,98 
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The In-Place Partitioning Problem 

88 
14 

98 25 
62 

52 

79 

30 
23 

31 

Input: 

14 

25 
30 

23 31 

88 
98 

62 
79 

 52 < 

Output: 
x=52 

Problem:  Partition a list into a set of small values and a set of large values. 
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Precise Specification 

p r 

p r q 
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3 subsets are maintained 

One containing values less 

than or equal to the pivot 

One containing values 

greater than the pivot 

One containing values yet 

to be processed 

Loop Invariant 
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Maintaining Loop Invariant 

• Consider element at location j 

– If greater than pivot, incorporate into 

‘> set’ by  incrementing j. 

– If less than or equal to pivot, 

incorporate into ‘  set’ by swapping 

with element at location i+1 and 

incrementing both i and j. 

– Measure of progress:  size of unprocessed set. 
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Maintaining Loop Invariant 
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Establishing Loop Invariant 
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Establishing Postcondition 

Exhaustive on exit 
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Establishing Postcondition 
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An Example 



Last Updated:  4/1/10 11:16 AM 
CSE 2011 

Prof. J. Elder 
- 72 - 

In-Place Partitioning:  Running Time  

Each iteration takes O(1) time Total = O(n)  

or 
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In-Place Partitioning is NOT Stable 

or 
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The In-Place Quick-Sort Algorithm 

Algorithm QuickSort(A, p, r) 

 if p < r 

  q = Partition(A, p, r) 

  QuickSort(A, p, q - 1) 

  QuickSort(A, q + 1, r) 
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Running Time of Quick-Sort 
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Quick-Sort Running Time 
We can analyze the running time of Quick-Sort using a recursion 

tree. 

At depth i of the tree, the problem is partitioned into 2i sub-problems. 

The running time will be determined by how balanced these 

partitions are. 

depth 

0 

1 

… 

h 
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Quick Sort 

88 
14 

98 25 
62 

52 

79 

30 
23 

31 

Let pivot be the first  

element in the list? 

14 

25 
30 

23 

88 
98 

62 
79 

 31  
52 
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Quick Sort 

 14  

14,23,25,30,31,52,62,79,88,98 

23,25,30,31,52,62,79,88,98 

If the list is already sorted,  

then the list is worst case unbalanced. 
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QuickSort:  Choosing the Pivot 

Common choices are: 

random element 

middle element 

median of first, middle and last element 
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Best-Case Running Time 

The best case for quick-sort occurs when each pivot partitions the 

array in half. 

Then there are O(log n) levels 

There is O(n) work at each level 

Thus total running time is O(n log n) 

depth time 

0 n 

1 n 

… … 

i n 

… … 

log n n 
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Quick Sort 

Best Time: 

Worst Time: 

Expected Time: 

T(n) = 2T(n/2) + (n) 

        = (n log n) 
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Worst-case Running Time 

The worst case for quick-sort occurs when the pivot is the unique 

minimum or maximum element 

One of L and G has size n  1 and the other has size 0 

The running time is proportional to the sum 

n + (n  1) + … + 2 + 1 

Thus, the worst-case running time of quick-sort is O(n2) 

depth time 

0 n 

1 n  1 

… … 

n  1 1 
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Average-Case Running Time 

If the pivot is selected randomly, the average-case running time 

for Quick Sort is O(n log n). 

Proving this requires a probabilistic analysis. 

We will simply provide an intution for why average-case O(n log n) 

is reasonable. 

depth 

0 

1 

… 

h 
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Expected Time Complexity for Quick Sort 

  Q: Why is it reasonable to expect O(n logn) time complexity?
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Expected Time Complexity for Quick Sort 

  Then T (n) =T (p(n 1)) +T (q(n 1)) +O(n)

  

wlog, suppose that q > p.

Let k be the depth of the recursion tree 

Then qkn = 1 k = logn / log(1 / q)

Thus k O(logn) :

  O(n) work done per level T (n) = O(nlogn).
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Properties of QuickSort 

In-place? 

Stable? 

Fast? 

Depends. 

Worst Case: 

Expected Case: 
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Summary of Comparison Sorts 

Algorithm Best 

Case 

Worst 

Case 

Average 

Case 

In 

Place 

Stable Comments 

Selection n2 n2 Yes Yes 

Bubble n n2 Yes Yes 

Insertion n n2 Yes Yes Good if often almost sorted 

Merge n log n n log n No Yes Good for very large datasets that 

require swapping to disk 

Heap n log n n log n Yes No Best if guaranteed n log n required 

Quick n log n n2 n log n Yes No Usually fastest in practice 
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Comparison Sort:  Lower Bound 

MergeSort and HeapSort are both (n logn) (worst case).

Can we do better? 
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Comparison Sort:  Decision Trees 

Example:  Sorting a 3-element array A[1..3] 
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Comparison Sort:  Decision Trees 

For a 3-element array, there are 6 external nodes. 

For an n-element array, there are     external nodes. n!
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Comparison Sort 

To store n! external nodes, a decision tree must have a 

height of at least    

Worst-case time is equal to the height of the binary 

decision tree. 

Thus T(n) logn!( )

where logn! = log i

i=1

n

log n / 2
i=1

n / 2

(n logn)

Thus T(n) (n logn)

Thus MergeSort & HeapSort are asymptotically optimal. 

logn!
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Linear Sorts? 

 Faster sorting may be possible if we can constrain the nature of the input.
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Example 1.  Counting Sort 

Invented by Harold Seward in 1954. 

Counting Sort applies when the elements to be sorted 

come from a finite (and preferably small) set. 

For example, the elements to be sorted are integers in 

the range [0…k-1], for some fixed integer k. 

We can then create an array V[0…k-1] and use it to 

count the number of elements with each value [0…k-1]. 

Then each input element can be placed in exactly the 

right place in the output array in constant time. 
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Counting Sort 

Input: N records with integer keys between [0…3]. 

Output: Stable sorted keys. 

Algorithm:  

Count frequency of each key value to determine transition 

locations 

Go through the records in order putting them where they go. 

Input: 

Output: 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 3 3 3 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 
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CountingSort 

Stable sort: If two keys are the same, their order does not change.  

Input: 

Output: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

Thus  the 4th record in input with digit 1 must be  

the 4th record in output with digit 1. 

It belongs at output index 8, because 8 records go before it  

ie, 5 records with a smaller digit & 3 records with the same digit 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3 

Count These! 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

# of records with digit v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

2 3 9 5 

N records. Time to count? (N) 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

# of records with digit v: 

# of records with digit < v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

3 3 9 5 

17 14 5 0 

N records, k different values. Time to count? (k) 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

# of records with digit < v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

17 14 5 0 

= location of first record with digit v. 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

17 14 5 0 Location of first record  

with digit v. 

Algorithm: Go through the records in order 

                   putting them where they go. 

1 0 ? 
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Loop Invariant 

The first i-1 keys have been placed in the correct 

locations in the output array 

The auxiliary data structure v indicates the location at 

which to place the ith key for each possible key value 

from [1..k-1]. 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

17 14 5 0 Location of next record  

with digit v. 

1 

Algorithm: Go through the records in order 

                   putting them where they go. 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

17 14 6 0 Location of next record  

with digit v. 

0 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

17 14 6 1 Location of next record  

with digit v. 

0 0 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

17 14 6 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

17 14 7 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 3 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

18 14 7 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 1 3 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

18 14 8 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 1 3 1 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

18 14 9 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 3 3 1 1 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

19 14 9 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 1 3 1 1 3 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

19 14 10 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 0 1 1 1 3 3 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

19 14 10 3 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 2 1 1 1 3 3 0 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

19 15 10 3 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 1 1 1 1 3 3 0 2 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

19 15 10 3 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 

                   putting them where they go. 

1  0 1 1 1 1 3 3 0 2 
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CountingSort 

Input: 

Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 

19 17 14 5 Location of next record  

with digit v. 

0 1 1  0 1 1 1 1 3 3 0 2 0 0 1 1 1 2 2 

(N) Time =  

(N+k) Total =  
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Input:  

• An array of N numbers. 

• Each number contains d digits. 

• Each digit between [0…k-1] 

Output:  
• Sorted numbers. 

Example 2. RadixSort    344 

125 

333  

134 

224 

334 

143  

225  

325  

243  

Digit Sort:  

• Select one digit 

• Separate numbers into k piles  

  based on selected digit (e.g., Counting Sort).  

125 

224 

225  

325  

333  

134 

334 

344 

143  

243  

Stable sort: If two cards are the same for that digit,  

their order does not change.  
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RadixSort    

344 

125 

333  

134 

224 

334 

143  

225  

325  

243  

Sort wrt which  

digit first? 

The most  

significant. 

125 

134  

143  

224 

225  

243  

344  

333  

334  

325  

Sort wrt which  

digit Second? 

The next most  

significant. 

125 

224 

225  

325  

134  

333  

334  

143  

243  

344  

All meaning in first sort lost. 
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RadixSort    

344 

125 

333  

134 

224 

334 

143  

225  

325  

243  

Sort wrt which  

digit first? 

Sort wrt which  

digit Second? 

The least  

significant. 

333  

143 

243  

344 

134 

224 

334  

125 

225  

325  

The next least  

significant. 

224 

125 

225  

325  

333  

134 

334  

143 

243  

344 



Last Updated:  4/1/10 11:16 AM 
CSE 2011 

Prof. J. Elder 
- 118 - 

RadixSort    

344 

125 

333  

134 

224 

334 

143  

225  

325  

243  

Sort wrt which  

digit first? 

Sort wrt which  

digit Second? 

The least  

significant. 

333  

143 

243  

344 

134 

224 

334  

125 

225  

325  

The next least  

significant. 

2 24 

1 25 

2 25  

3 25  

3 33  

1 34 

3 34  

1 43 

2 43  

3 44 

Is sorted wrt least  sig. 2 digits. 
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Sort wrt i+1st  

digit. 

2 24 

1 25 

2 25  

3 25  

3 33  

1 34 

3 34  

1 43 

2 43  

3 44 

Is sorted wrt  

first i digits. 

1 25  

1 34  

1 43  

2 24 

2 25  

2 43 

3 25  

3 33  

3 34  

3 44 

Is sorted wrt  

first i+1 digits. 

i+1 

These are in the  

correct order  

because sorted 

wrt high order digit  

RadixSort     
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Sort wrt i+1st  

digit. 

2 24 

1 25 

2 25  

3 25  

3 33  

1 34 

3 34  

1 43 

2 43  

3 44 

Is sorted wrt  

first i digits. 

1 25  

1 34  

1 43  

2 24 

2 25  

2 43 

3 25  

3 33  

3 34  

3 44 
i+1 

These are in the  

correct order  

because was sorted & 

stable sort left sorted 

Is sorted wrt  

first i+1 digits. 

RadixSort    
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Loop Invariant 

The keys have been correctly stable-sorted with respect 

to the i-1 least-significant digits. 
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Running Time 
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Example 3. Bucket Sort 

Applicable if input is constrained to finite interval, e.g., 

[0…1). 

If input is random and uniformly distributed, expected 

run time is (n).  
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Bucket Sort 
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Loop Invariants 

Loop 1 

The first i-1 keys have been correctly placed into buckets of 

width 1/n. 

Loop 2 

The keys within each of the first i-1 buckets have been correctly 

stable-sorted. 
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PseudoCode 

Expected Running Time 


